已知椭圆及直线.(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程.
已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为. (1)求椭圆的标准方程. (2)斜率为1的直线L与椭圆交于A、B两点,O为原点,当△AOB的面积为时,求直线L的方程.
已知 p:方程有两个不等的实根;q:方程无实根.若“p”为假命题,“q”为真命题,求实数 m 的取值范围.
求与椭圆有共同焦点,且过点的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率.
(本小题14分) 数列的前项和为,且对都有,则: (1)求数列的前三项; (2)根据上述结果,归纳猜想数列的通项公式,并用数学归纳法加以证明. (3)求证:对任意都有.
(本小题满分13分) (1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为几种? (2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种? (3)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?