(12分) 已知圆过两点,且圆心在上.(1)求圆的方程;(2)设是直线上的动点,是圆的两条切线, 为切点,求四边形面积的最小值.
已知双曲线的两个焦点为、点在双曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.
已知函数在与时都取得极值 (1)求的值; (2)若对,不等式恒成立,求的取值范围.
在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹方程,指出轨迹是什么?并求出该轨迹的焦点和离心率.
设函数.(1)求函数的单调区间.(2)若方程有且仅有三个实根,求实数的取值范围.
已知命题方程有两个不等的正实数根;命题方程无实数根。若“或”为真命题,求的取值范围.