欲测河的宽度,在一岸边选定A、B两点,望对岸的标记物C,测得∠CAB=45°,∠CBA=75°,AB=120 m,求河宽.(精确到0.01 m)
如图,圆O为三棱锥P-ABC的底面ABC的外接圆,AC是圆O的直径,PABC,点M是线段PA的中点.(1)求证: BCPB;(2)设PAAC,PA=AC=2,AB=1,求三棱锥P-MBC的体积;(3)在ABC内是否存在点N,使得MN∥平面PBC?请证明你的结论.
(本小题满分12分)已知单调递增的等比数列满足:,且是的等差中项.(1)求数列的通项公式;(2)若,,求成立的正整数的最小值.
(本小题满分12分)某学校举行元旦晚会,组委会招募了12名男志愿者和18名 女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm),身高在175 cm以上(包括175 cm)定义为“高个子”,身高在175 cm以下(不包括175 cm)定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180 cm以上(包括180 cm)的志愿者中选出男、女各一人,求这2人身高相差5 cm以上的概率.
(本小题满分12分)在中,角的对边分别是,若.(1)求角的大小;(2)若,的面积为,求的值.
已知函数,,其中且.(1)判断函数的单调性;(2)当时,求函数在区间上的最值;(3)设函数当时,若对于任意的,总存在唯一的,使得成立,试求的取值范围.