如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.(1)转动转盘一次,转到数字是3的区域的概率是多少?(2)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;(3)在第(2)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.
阅读下面的文字,解答问题. 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分﹣1,根据以上的内容,解答下面的问题: (1)的整数部分是,小数部分是; (2)1+的整数部分是,小数部分是; (3)若设2+整数部分是x,小数部分是y,求x﹣y的值.
用适当的符号表示下列关系: (1)x的与x的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米; (3)三件上衣与四条长裤的总价钱不高于268元; (4)明天下雨的可能性不小于70%; (5)小明的身体不比小刚轻.
已知有理数m,n的位置在数轴上如图所示,用不等号填空. (1)n﹣m0;(2)m+n0;(3)m﹣n0;(4)n+10;(5)m•n0; (6)m+10.
在数轴上表示不等式﹣3≤x<6的解集和x的下列值:﹣4,﹣2,0,,7,并利用数轴说明x的这些数值中,哪些满足不等式﹣3≤x<6,哪些不满足?
在数轴上表示下列不等式的解集: (1)x>﹣1; (2)x≤3; (3)0<x≤2; (4)x≤3且x≠0.