如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.(1)转动转盘一次,转到数字是3的区域的概率是多少?(2)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;(3)在第(2)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.
在图1、图2中,线段AC=CE,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,容易证明FM = MH,FM⊥HM;现将图1中的CE绕点C顺时针旋转一个锐角,得到图2,判断△FMH的形状,并证明你的结论.
某数码卖场销售某种品牌电脑,对于100~500台的大客户订单实行降价促销,每台电脑的售价y(元/台)与数量x(台)的函数关系可以由图中线段AB来表示,每台电脑的进货及运输等成本总共为2250元。(1)写出每台电脑的售价y与台数x的函数关系式:________________;自变量的取值范围是____________且x为整数;(2)若一次政府采购的订单使该卖场共获利12万元,不计其它成本消耗,试求出这次政府采购了多少台电脑;(3)求出每份大客户订单的总获利z(元)与购买数量x(台)之间的函数关系式。当一份订单的购买数量为多少台时,卖场获利最多?
如图,已知△ABC内接于⊙O,∠BAC=60°,AD⊥BC于D,BE⊥AC于E交AD于H,若CF是⊙O的直径,(1)求∠FCB的度数;(2)求证:AH=CF.
已知二次函数y=ax2+bx+c(a≠0)的图象过点A(2,0),B(-2,-4),对称轴为直线x=-1. (1)求这个二次函数的解析式;(2)若-3<x<3,直接写出y的取值范围;(3)若一元二次方程ax2+bx+c-m=0(a≠0,m为实数)在-3<x<3的范围内有实数根,直接写出m的取值范围.
对于抛物线y=x2-4x+3,(1)与y轴的交点坐标是___________,与x轴的交点坐标是_______________,顶点坐标是____________.(2)在坐标系中利用描点法画出此抛物线.