如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等。设细绳的总长为,(1)设∠CA1O =(rad),将y表示成的函数关系式;(2)请你设计,当角正弦值的大小是多少时,细绳总长最小,并指明此时 BC应为多长。
如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。求证:(1)PA∥平面BDE (2)平面PAC平面BDE(3)求二面角E-BD-A的大小。
已知圆 和圆外一点,求过点 的圆的切线方程。
已知两条直线:与:的交点,求满足下列条件的直线方程(1)过点P且过原点的直线方程;(2)过点P且垂直于直线:直线的方程;(10分)
(本小题满分12分)已知甲船正在大海上航行。当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:)。(1) 试问乙船航行速度的大小;(2) 试问乙船航行的方向(试用方位角表示,譬如北偏东…度)。
(本小题满分12分)已知各项均为正数的数列中,是数列的前项和,对任意,有(1)求常数的值;(2)求数列的通项公式;(3)记,求数列的前项和。