计算:3×52.
如图, ΔOAB 是边长为 2 + 3 的等边三角形,其中 O 是坐标原点,顶点 B 在 y 轴正方向上,将 ΔOAB 折叠,使点 A 落在边 OB 上,记为 A ' ,折痕为 EF .
(1)当 A ' E / / x 轴时,求点 A ' 和 E 的坐标;
(2)当 A ' E / / x 轴,且抛物线 y = − 1 6 x 2 + bx + c 经过点 A ' 和 E 时,求抛物线与 x 轴的交点的坐标;
(3)当点 A ' 在 OB 上运动,但不与点 O 、 B 重合时,能否使△ A ' EF 成为直角三角形?若能,请求出此时点 A ' 的坐标;若不能,请你说明理由.
已知:如图, E 、 F 是平行四边形 ABCD 的对角线 AC 上的两点, AE = CF .
求证:(1) ΔADF ≅ ΔCBE ;
(2) EB / / DF .
不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为 1 2 .
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
某市推出电脑上网包月制,每月收取费用 y (元 ) 与上网时间 x (小时)的函数关系如图所示,其中 BA 是线段,且 BA / / x 轴, AC 是射线.
(1)当 x ⩾ 30 ,求 y 与 x 之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元的上网费用?
(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?
阅读下列题目的解题过程:
已知 a 、 b 、 c 为 ΔABC 的三边,且满足 a 2 c 2 − b 2 c 2 = a 4 − b 4 ,试判断 ΔABC 的形状.
解: ∵ a 2 c 2 − b 2 c 2 = a 4 − b 4 (A)
∴ c 2 ( a 2 − b 2 ) = ( a 2 + b 2 ) ( a 2 − b 2 ) (B)
∴ c 2 = a 2 + b 2 (C)
∴ ΔABC 是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ;
(3)本题正确的结论为: .