在抛物线上,求一点P,使P到直线的距离最短,并求距离的最小值.
已知函数(1)解不等式;(2)若不等式的解集为空集,求实数的取值范围.
已知函数的减区间是(-2,2)(1)试求m,n的值;(2)求过点且与曲线相切的切线方程;(3)过点A(1,t),是否存在与曲线相切的3条切线,若存在,求实数t的取值范围;若不存在,请说明理由.
已知函数, .(1)求在点处的切线方程; (2)证明: 曲线与曲线有唯一公共点; (3)设,比较与的大小, 并说明理由.
在平面直角坐标系xOy中,已知椭圆C1:=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
在△ABC中,角A、B、C的对边分别是.已知(1)求角C的大小;(2)若,求△ABC外接圆半径.