某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点所到的时间比其他两个观测点晚期4s.已知各观测点到该中心的距离都是1020m.试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上).
已知函数,且. (1)求的值; (2)判断函数的奇偶性; (3)判断在上的单调性并加以证明.
二次函数满足且. (1)求的解析式; (2)求在区间上的最大值与最小值.
已知函数. (1)求证:在上是单调递增函数(用定义证明); (2)若在上的值域是,求的值.
若集合和. (1)当时,求集合; (2)当时,求实数的取值范围.
已知椭圆:的离心率,原点到过点,的直线的距离是. (Ⅰ)求椭圆C的方程; (Ⅱ)设动直线与两定直线和分别交于两点.若直线总与椭圆有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.