计算:(—36)—(—25)—(+36)+(+72);
如图所示, Rt Δ PAB 的直角顶点 P ( 3 , 4 ) 在函数 y = k x ( x > 0 ) 的图象上,顶点 A 、 B 在函数 y = t x ( x > 0 , 0 < t < k ) 的图象上, PA / / y 轴,连接 OP , OA ,记 ΔOPA 的面积为 S ΔOPA , ΔPAB 的面积为 S ΔPAB ,设 w = S ΔOPA − S ΔPAB .
①求 k 的值以及 w 关于 t 的表达式;
②若用 w max 和 w min 分别表示函数 w 的最大值和最小值,令 T = w max + a 2 − a ,其中 a 为实数,求 T min .
如图示一架水平飞行的无人机 AB 的尾端点 A 测得正前方的桥的左端点 P 的
俯角为 α 其中 tan α = 2 3 ,无人机的飞行高度 AH 为 500 3 米,桥的长度为1255米.
①求点 H 到桥左端点 P 的距离;
②若无人机前端点 B 测得正前方的桥的右端点 Q 的俯角为 30 ° ,求这架无人机的长度 AB .
如图示,正方形 ABCD 的顶点 A 在等腰直角三角形 DEF 的斜边 EF 上, EF 与 BC 相交于点 G ,连接 CF .
①求证: ΔDAE ≅ ΔDCF ;
②求证: ΔABG ∽ ΔCFG .
某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行 3 × 3 阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是 3 × 3 阶魔方赛 A 区域30名爱好者完成时间统计图,求:
① A 区域 3 × 3 阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).
②若 3 × 3 阶魔方赛各个区域的情况大体一致,则根据 A 区域的统计结果估计在 3 × 3 阶魔方赛后进入下一轮角逐的人数.
③若 3 × 3 阶魔方赛 A 区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).
如图,抛物线 y = m x 2 − 16 mx + 48 m ( m > 0 ) 与 x 轴交于 A , B 两点(点 B 在点 A 左侧),与 y 轴交于点 C ,点 D 是抛物线上的一个动点,且位于第四象限,连接 OD 、 BD 、 AC 、 AD ,延长 AD 交 y 轴于点 E .
(1)若 ΔOAC 为等腰直角三角形,求 m 的值;
(2)若对任意 m > 0 , C 、 E 两点总关于原点对称,求点 D 的坐标(用含 m 的式子表示);
(3)当点 D 运动到某一位置时,恰好使得 ∠ ODB = ∠ OAD ,且点 D 为线段 AE 的中点,此时对于该抛物线上任意一点 P ( x 0 , y 0 ) 总有 n + 1 6 ⩾ − 4 3 m y 0 2 − 12 3 y 0 − 50 成立,求实数 n 的最小值.