(本小题满分10分)已知中心在原点O,焦点在轴上的椭圆C的离心率为,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为。(1)求椭圆C的标准方程;(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求的取值范围.
(本小题满分15分) 已知函数. (1)当时,求曲线在点的切线方程; (2)对一切,恒成立,求实数的取值范围; (3)当时,试讨论在内的极值点的个数.
已知是等差数列,公差为,首项,前项和为.令,的前项和.数列满足,. (1)求数列的通项公式; (2)若,,求的取值范围.
(本小题满分14分)如图,四棱锥,⊥底面,,,,,分别是的中点. (1)证明:∥平面; (2)求直线与平面所成角的正弦值.
(本小题满分14分)在中, 分别是角的对边,且. (1)求的大小; (2)若,,求的面积.
设是椭圆:()的左、右焦点,过的直线与交于两点.若,,则椭圆的离心率为.