已知抛物线过点.(I)求抛物线的方程;(II)已知圆心在轴上的圆过点,且圆在点的切线恰是抛物线在点的切线,求圆的方程;(Ⅲ)如图,点为轴上一点,点是点关于原点的对称点,过点作一条直线与抛物线交于两点,若,证明: .
已知函数f(x)=x3. (1)判断f(x)的奇偶性;(2)求证:f(x)>0.
已知Sn为正项数列{an}的前n项和,且满足Sn=+an(n∈ N+),求出a1,a2,a3,a4,猜想{an}的通项公式并给出证明
先阅读下列不等式的证法,再解决后面的问题: 已知a1,a2∈R,a1+a2=1,求证:+≥. 证明:构造函数f(x)=(x-a1)2+(x-a2)2,f(x)对一切实数x∈R,恒有f(x)≥0,则Δ=4-8(+)≤0,∴+≥. (1)已知a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式; (2)参考上述解法,对你推广的结论加以证明.
设V为全体平面向量构成的集合,若映射f:V→R满足: 对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p. 现给出如下映射: ①f1:V→R,f1(m)=x-y,m=(x,y)∈V; ②f2:V→R,f2(m)=x2+y,m=(x,y)∈V; ③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V. 分析映射①②③是否具有性质p.
如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA、SB、SC和底面ABC,所成的角分别为α1、α2、α3,三侧面SBC,SAC,SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间情形的一个猜想.