设函数,曲线过点,且在点处的切线斜率为2.(Ⅰ)求的值;(Ⅱ)求的极值点;(Ⅲ)对定义域内任意一个,不等式是否恒成立,若成立,请证明;若不成立,请说明理由。
设数列满足,,写出这个数列的前5项并归纳猜想通项公式。
在△ABC中,已知,,B=45°求A、C及c
如图,是圆的直径,点在圆上,,交于点,平面,,.(Ⅰ)证明:;(Ⅱ)求平面与平面所成的锐二面角的余弦值.
在今年伦敦奥运会期间,来自美国和英国的共计6名志愿者被随机地平均分配到跳水、篮球、体操这三个岗位服务,且跳水岗位至少有一名美国志愿者的概率是.(Ⅰ)求6名志愿者中来自美国、英国的各几人;(Ⅱ)求篮球岗位恰好美国人、英国人各一人的概率.(Ⅲ)设随机变量为在体操岗位服务的美国志愿者的个数,求的分布列及期望
已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.