在育民中学举办的“艺术节”活动中,八·二班学生成绩十分突出,小刚将全班获奖作品情况绘成如图的条形统计图(成绩为60分以上的都是获奖作品)(1)请根据图表计算出八·二班学生有多少件作品获奖?(2)用计算器求出八·二班获奖作品的平均成绩.(3)求出这次活动中获奖作品成绩的众数和中位数.
如图,已知AB∥CD,∠1=∠3,试说明AC∥BD。
读句画图如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q(2)过点P作PR⊥CD,垂足为R(3)若∠DCB=,猜想∠PQC是多少度?并说明理由。
抛物线经过、两点,与轴交于另一点.(1)求抛物线的解析式;(2)已知点在第二象限的抛物线上,求点关于直线的对称点的坐标;(3)在(2)的条件下,连接,点为y轴上一点,且,求出点的坐标.
如图,△ABC的高AD=4,BC=8,MNPQ是△ABC中任意一个内接矩形(1)设MN=x,MQ=y,求y关于x的函数解析式;(2)设MN=x,矩形MNPQ的面积为s,求s与x的函数关系式,并求出当MN为多大时,矩形MNPQ面积s有最大值,最大值为多少?
如图,在Rt△ABC中,∠C=90°,sinB=,D在BC边上,且∠ADC=45°,AC=5。 求∠BAD的正切值。