写出下列命题的“非P”命题,并判断其真假:(1)若有实数根.(2)平方和为0的两个实数都为0.(3)若是锐角三角形, 则的任何一个内角是锐角.(4)若,则中至少有一为0.(5)若 ,则 .
已知数列中,.(1)求证:数列是等比数列;(2)求数列的通项公式.
设函数(1)若关于x的不等式在有实数解,求实数m的取值范围;(2)设,若关于x的方程至少有一个解,求p 的最小值.(3)证明不等式:
已知椭圆:()的离心率,左、右焦点分别为,点,点在线段的中垂线上.(1)求椭圆的方程;(2)设直线:与椭圆交于、两点,直线与的倾斜角分别为、,且,求证:直线经过定点,并求该定点的坐标
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面; (2)若二面角为,求与平面所成角的正弦值。
如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.