在平面直角坐标系中,对于任意两点
与
的“非常距离”,给出如下定义:
若,则点
与点
的非常距离为
;
若,则点
与点
的非常距离为
;
例如:点(1,2),点
(3,5),因为
,所以点
与点
的“非常距离”为
,也就是图1中线段
与线段
长度的较大值(点Q为垂直于y轴的直线
与垂直于x轴的直线
的交点).
(1)已知点A(,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值.
(2)已知C是直线上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应点E和点C的坐标.