设函数分别在、处取得极小值、极大值.平面上点A、B的坐标分别为、,该平面上动点P满足,点Q是点P关于直线的对称点求:(Ⅰ)点A、B的坐标 ;(Ⅱ)动点Q的轨迹方程
设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},求, (CUA)(CUB),。
设集合,,若,求实数的取值范围.
在平面直角坐标系中,O为坐标原点,已知点,,若点C满足,点C的轨迹与抛物线交于A、B两点.(I)求证:;(II)在轴正半轴上是否存在一定点,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.
(I)已知函数在上是增函数,求得取值范围;(II)在(I)的结论下,设,,求函数的最小值.
已知等差数列的公差,对任意,都有.(I)求证:对任意,所有方程均有一个相同的实数根;(II)若,方程的另一不同根为,,求数列的前n项和.