(本小题满分14分)已知数列的前n项和为,且.(Ⅰ)求数列通项公式;(Ⅱ)若,,求证数列是等比数列,并求数列的前项和.
【选修4-5:不等式选讲】 (1)设函数的定义域为,试求的取值范围; (2)已知实数满足,求的最小值.
【选修4-4:坐标系与参数方程】 已知曲线的参数方程为:为参数),直线的参数方程为:为参数),点,直线与曲线交于两点. (1)写出曲线和直线在直角坐标系下的标准方程; (2)求的值.
【选修4-1:几何证明选讲】 如图,在中,于,于,交于点,若,. (1)求证:; (2)求线段的长度.
已知函数. (1)若恒成立,试确定实数的取值范围; (2)证明:.
椭圆,作直线交椭圆于两点,为线段的中点,为坐标原点,设直线的斜率为,直线的斜率为,. (1)求椭圆的离心率; (2)设直线与轴交于点,且满足,当的面积最大时,求椭圆的方程.