(本小题满分12分)已知函数,,且函数在处取得极值。(1)求的解析式与单调区间;(2)是否存在实数,对任意的,都存在,使得成立?若存在,求出实数的取值范围;若不存在,说明理由。
如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点.(1)求四棱锥-的体积;(2)求证:平面;(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.
已知直线:(1)求证:不论实数取何值,直线总经过一定点.(2)为使直线不经过第二象限,求实数的取值范围.(3)若直线与两坐标轴的正半轴围成的三角形面积最小,求的方程.
如图,在六面体中,,,.求证:(1);(2).
已知直线:和:。(1)当∥时,求a的值(2)当⊥时求a的值及垂足的坐标
如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.