(本小题满分12分)已知函数,,且函数在处取得极值。(1)求的解析式与单调区间;(2)是否存在实数,对任意的,都存在,使得成立?若存在,求出实数的取值范围;若不存在,说明理由。
某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)
设是椭圆的两个焦点,是椭圆上一点,若,证明:的面积只与椭圆的短轴长有关
从椭圆上一点向轴引垂线,垂足恰为椭圆的左焦点,为椭圆的右顶点,是椭圆的上顶点,且.⑴求该椭圆的离心率.⑵若该椭圆的准线方程是,求椭圆方程.
已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系.(Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程;(Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.
已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点。(1)求椭圆的标准方程;(2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值。