斜率为k的直线过点P(0,1),与双曲线交于A,B两点. (1)求实数k的取值范围;(2)若以AB为直径的圆过坐标原点,求k的值.
(本小题满分15分) 设等差数列的前项和为且.(1)求数列的通项公式及前项和公式; (2)设数列的通项公式为(t为正整数),问: 是否存在正整数t,使得成等差数列?若存在,求出t和m的值;若不存在,请说明理由.
(本小题满分15分) 如图所示,一科学考察船从港口出发,沿北偏东角的射线方向航行,而在离港口(为正常数)海里的北偏东角的A处有一个供给科考船物资的小岛,其中,.现指挥部需要紧急征调沿海岸线港口正东m()海里的B处的补给船,速往小岛A装运物资供给科考船,该船沿BA方向全速追赶科考船,并在C处相遇.经测算当两船运行的航向与海岸线OB围成的三角形OBC的面积最小时,这种补给最适宜. ⑴ 求S关于m的函数关系式; ⑵ 应征调m为何值处的船只,补给最适宜.
(本小题满分14分) 1.如图,矩形中,,,为上的点,且,.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求三棱锥的体积.
(本小题满分14分) 设的内角所对的边分别为.已知,,. (Ⅰ)求的周长; (Ⅱ)求的值.
已知,函数(的图像连续不断) (Ⅰ)求的单调区间; (Ⅱ)当时,证明:存在,使; (Ⅲ)若存在均属于区间的,且,使,证明.