《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使最大的三份之和的是较小的两份之和,则最小1份的大小是
已知函数的最大值和最小值分别是和,则
函数 的最小值是 .
一飞行的蜻蜓被长为细绳绑在某一房间一角(仍可飞行),则此蜻蜓可活动的三维空间大小为_________。
双曲线的离心率为,则a的值是 __________ ;
设是空间的三条直线,给出以下五个命题:①若a⊥b,b⊥c,则a⊥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交; ④若a和b共面,b和c共面,则a和c也共面; ⑤若a∥b, b∥c,则a∥c;其中正确的命题的序号是 .