(本小题满分15分)、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
如图,四棱锥的底面是正方形,⊥平面, (1)求证:; (2)求二面角的大小.
设函数. (1)求函数在上的值域; (2)证明对于每一个,在上存在唯一的,使得; (3)求的值.
已知圆过定点,圆心在抛物线上,、为圆与轴的交点. (1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长. (2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论. (3)当圆心在抛物线上运动时,记,,求的最大值,并求出此时圆的方程.
数列是递增的等差数列,且,. (1)求数列的通项公式; (2)求数列的前项和的最小值; (3)求数列的前项和.
已知.,其中、为锐角,且. (1)求的值; (2)若,求及的值.