(本小题满分15分)、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
,,P、E在同侧,连接PE、AE.求证:BC//面APE;设F是内一点,且,求直线EF与面APF所成角的大小
.已知数列的前项和为,且.若数列为等比数列,求的值;若,数列前项和为,时取最小值,求实数的取值范围.
在△ABC中,角A,B,C的对边为,向量,,且.求角C; 若, ,求△ABC面积.
.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,、分别为曲线与轴,轴的交点。 (1)写出曲线的直角坐标方程,并求、的极坐标; (2)设中点为,求直线的极坐标方程。
(12分)如图,的角平分线AD的延长线交它的外接圆于点E (I)证明: (II)若的面积,求的大小。