a,b,c为△ABC的三边,其面积S△ABC=12,bc=48,b-c=2,求a.
((本小题满分12分) 设函数. (Ⅰ)当时,过原点的直线与函数的图象相切于点P,求点P的坐标; (Ⅱ)当时,求函数的单调区间; (Ⅲ)当时,设函数,若对于],[0,1] 使≥成立,求实数b的取值范围.(是自然对数的底,)
(.(本小题满分12分) 如图,焦距为2的椭圆E的两个顶点分别为和,且与共线. (Ⅰ)求椭圆E的标准方程; (Ⅱ)若直线与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.
((本小题满分12分) 数列各项均为正数,其前项和为,且满足. (Ⅰ)求证数列为等差数列,并求数列的通项公式; (Ⅱ)设, 求数列的前n项和,并求使对所 有的都成立的最大正整数m的值.
((本小题满分12分) 如图,在四棱锥中,侧棱底面,底面为矩形,,为的上一点,且,为PC的中点. (Ⅰ)求证:平面AEC; (Ⅱ)求二面角的余弦值.
(本小题满分12分) 在某海岸A处,发现北偏东方向,距离A处n mile的B处有一艘走私船 在A处北偏西的方向,距离A处n mile的C处的缉私船奉命以n mile/h的速度追截走私船. 此时,走私船正以5 n mile/h的速度从B处按照北偏东方向逃窜,问缉私船至少经过多长时间可以追上走私船,并指出缉私船航行方向.