(本小题满分14分)如图,已知几何体的三视图(单位:cm).(1)在这个几何体的直观图相应的位置标出字母;(2)求这个几何体的表面积及体积;(3)设异面直线、所成角为,求.
已知数列的各项均为正数,其前项和为,且. ⑴求证:数列是等差数列; ⑵设,求证:; ⑶设,,求.
已知如图,平行四边形中,,,,正方形所在平面与平面垂直,分别是的中点。 ⑴求证:平面; ⑵求平面与平面所成的二面角的正弦值。
在中,分别为角所对的边,且,,,求角的正弦值.
已知函数(是常数)在处的切线方程为,且. (Ⅰ)求常数的值; (Ⅱ)若函数()在区间内不是单调函数,求实数的取值范围; (Ⅲ)证明:.
已知数列的前项和为,,是与的等差中项(). (Ⅰ)证明数列为等比数列; (Ⅱ)求数列的通项公式; (Ⅲ)是否存在正整数,使不等式()恒成立,若存在,求出的最大值;若不存在,请说明理由.