如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(-2,3)、B(-3,1).(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)请建立直角坐标系并写出点A1的坐标;(3)求四边形AOA1B1的面积.
如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E. (1)求证:; (2)判断AF与BD是否平行,并说明理由.
如图,把△EFP按图所示的方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上.已 知EP=FP=,EF=,∠BAD=60°,且AB. (1)求∠EPF的大小; (2)若AP=6,求AE+AF的值; (3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)
如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H. (1)求证:四边形EGFH是矩形; (2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.
如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH. (1)求证:四边形EFGH是正方形; (2)判断直线EG是否经过一个定点,并说明理由; (3)求四边形EFGH面积的最小值。