(本小题满分12分)已知函数定义域为,若对于任意的,都有,且时,有.(1)求证: 为奇函数;(2)求证: 在上为单调递增函数;(3)设,若<,对所有恒成立,求实数的取值范围.
命题: 关于的不等式,对一切恒成立; 命题: 函数在上是增函数.若或为真, 且为假,求实数的取值范围.
抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线于两点(三点互不相同),且满足(且).(1)求抛物线的焦点坐标和准线方程;(2)设直线上一点,满足,证明线段的中点在轴上;(3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.
已知圆的方程为:,直线的方程为,点在直线上,过点作圆的切线,切点为.(1)若,求点的坐标;(2)若点的坐标为,过点的直线与圆交于两点,当时,求直线的方程;(3)求证:经过(其中点为圆的圆心)三点的圆必经过定点,并求出所有定点的坐标.
如图,在底面为平行四边形的四棱锥中,,平面,且,点是的中点.(1)求证:;(2)求二面角的大小.
如图,为圆的直径,点.在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)求四棱锥的体积.