(本小题满分12分)已知函数定义域为,若对于任意的,都有,且时,有.(1)求证: 为奇函数;(2)求证: 在上为单调递增函数;(3)设,若<,对所有恒成立,求实数的取值范围.
数列满足,. (1)求通项公式; (2)令,数列前项和为, 求证:当时,; (3)证明:.
已知数列中,,对于任意的,有 (1)求数列的通项公式; (2)若数列满足:求数列的通项公式; (3)设,是否存在实数,当时,恒成立,若存在,求实数的取值范围,若不存在,请说明理由.
已知各项均为正数的数列满足,, . (Ⅰ)求证:数列是等比数列; (Ⅱ)当取何值时,取最大值,并求出最大值; (Ⅲ)若对任意恒成立,求实数的取值范围.
1已知函数,且,. (Ⅰ)求的值域 (Ⅱ)指出函数的单调性(不需证明),并求解关于实数的不等式; (Ⅲ)定义在上的函数满足,且当时求方程在区间上的解的个数.
设,,Q=;若将,,适当排序后可构成公差为1的等差数列的前三项(I)在使得,,有意义的条件下,试比较的大小; (II)求的值及数列的通项; (III)记函数的图象在轴上截得的线段长为,设,求.