用一段长为30米的篱笆围成一个一边靠墙的矩形菜园,墙长为18米,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
已知某二次函数当时,函数有最大值-1,且函数图像与y轴交于(0,-4),求该二次函数的解析式.
一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意摸出1个球是红球的概率为.(1)试求袋中绿球的个数;(2)从箱子中任意摸出一个球是黄球的概率是多少?(3)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.
已知:如图是破铁轮的轮廓,请用直尺和圆规作出它的圆心。
如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.(1)求b,c的值。(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由. (3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.
如图,为⊙O的直径,为弦,且,垂足为.(1)如果⊙O的半径为4,,求的度数;(2)若点为 的中点,连结,.求证:平分;(3)在(1)的条件下,圆周上到直线距离为3的点有多少个?并说明理由.