已知实数集R,集合,集合,集合.(Ⅰ)求(C; (Ⅱ)若,求的取值范围。
(本小题满分16分)已知椭圆中心为,右顶点为,过定点作直线交椭圆于、两点. (1)若直线与轴垂直,求三角形面积的最大值; (2)若,直线的斜率为,求证:; (3)在轴上,是否存在一点,使直线和的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
(本小题满分14分)如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2. (1) 若小路一端E为AC的中点,求此时小路的长度; (2) 求的最小值.
(本小题满分14分)如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG. (1) 求证:HG∥平面ABC; (2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.
(本小题满分14分)在△ABC中,角A、B、C的对边分别为a、b、c. (1) 若sin=2cos A,求A的值; (2) 若cosA=,b=3c,求sinC的值.
(本小题满分10分)选修4-5:不等式选讲。设函数 (Ⅰ)当时,求函数的最小值,并指出取得最小值时的值; (Ⅱ)若,讨论关于的方程=的解的个数.