(本小题满分12分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题:(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米空气的含药量降到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到进教室?
如图,已知△ABC在平面α外,它的三边所在直线分别交平面α于点P、Q、R,求证:P、Q、R三点共线.
已知函数,令。 (1)求函数的值域; (2)任取定义域内的5个自变量,根据要求计算并填表;观察表中数据间的关系,猜想一个等式并给予证明;
(3)如图,已知在区间的图像,请据此在该坐标系中补全函数在定义域内的图像,并在同一坐标系中作出函数的图像. 请说明你的作图依据.
(本小题满分12分)已知函数的图象与轴交点的纵坐标为1,在相邻的两点,上分别取得最大值和最小值.(1)求的解析式;(2)若函数的最大和最小值分别为6和2,求的值.
设向量 (1)若与垂直,求的值 (2)求的最大值;
若是偶函数,为常数,且的最小值是0. (1)求的值;(2)求的最大值及此时的集合.