(本小题满分12分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题:(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米空气的含药量降到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到进教室?
设全集,,. (1)若,求,(∁); (2)若,求实数的取值范围.
(1)已知tan α=,求的值; (2)化简:.
已知双曲线的左、右两个顶点分别为.曲线是以两点为短轴端点,离心率为的椭圆.设点在第一象限且在曲线上,直线与椭圆相交于另一点. (1)设点的横坐标分别为,证明:; (2)设与(其中为坐标原点)的面积分别为与,且,求的最大值.
已知函数(为常数,无理数是自然对数的底数),曲线在点处的切线方程是. (1)求的值; (2)证明不等式.
已知圆,经过椭圆的右焦点及上顶点,过圆外一点倾斜角为的直线交椭圆于两点. (1)求椭圆的方程; (2)若右焦点在以线段CD为直径的圆的内部,求的取值范围.