把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母线长.
探究:是否存在常数a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)对对一切正自然数n均成立,若存在求出a、b、c,并证明;若不存在,请说明理由.
已知的图象经过点,且在处的切线方程是(1)求的解析式;(2)求的单调递增区间
(10分)已知的展开式中各项系数之和等于的展开式的常数项,并且的展开式中系数最大的项等于54,求的值.
(14分)设函数,其中.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)若函数仅在处有极值,求的取值范围;(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
(12分)在德国不来梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形展品,其中第一堆只有一层,就一个球,第2、3、4、…堆最底层(第一层)分别按下图方式固定摆放,从第二层开始每层的小球自然垒放在下一层之上,第堆的第层就放一个乒乓球,以表示第堆的乒乓球总数. (1)求;(2)求(用表示)(可能用到的公式:)