某人的储蓄卡密码是4位数字,他只记得前面3位数字,现在他在使用这张储蓄卡时任意按下密码的最后一位数字,正好按对的概率是多少?
((本小题12分)已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为.(1)求椭圆的标准方程.(2)斜率为1的直线与椭圆交于A、B两点,O为原点,当△AOB的面积最大时,求直线的方程.
((本小题12分)函数f(x)= 4x3+ax2+bx+5的图像在x=1处的切线方程为y=-12x; (1)求函数f(x)的解析式;(2)求函数f(x)在 [—3,1]上的最值。
(本小题12分)已知数列{an}中,a1="1" ,a2=3,且点(n,an)满足函数y = kx + b.(1)求k,b的值,并写出数列{an}的通项公式;(2)记,求数列{bn}的前n和Sn.
(本小题10分)围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x米,总费用为y(单位:元).(1)将y表示为x的函数; (2)试确定x,使修建此矩形场地围墙的总费用最小, 并求出最小总费用.
(本小题10分)在△ABC中,角A,B,C的对边分别为,且满足,.(1)求△ABC的面积. (2)若,求的值.