已知是函数的一个极值点。(Ⅰ)求;(Ⅱ)求函数的单调区间;(Ⅲ)若直线与函数的图象有3个交点,求的取值范围。
(本小题满分14分)平面内动点与两定点连线的斜率之积等于,若点的轨迹为曲线,过点作斜率不为零的直线交曲线于点.(1)求曲线的方程;(2)求证:;(3)求面积的最大值.
(本小题满分13分)数列的前项和为,且,数列满足.(1)求数列和的通项公式;(2)设数列满足,其前项和为,求.
已知椭圆=1(a>b>0)的离心率,过点和的直线与坐标原点距离为.(1)求椭圆的方程;(2)已知定点,若直线与椭圆相交于两点,试判断是否存在值,使以为直径的圆过定点?若存在求出这个值,若不存在说明理由.
如图,在四棱锥中,底面是正方形,底面,分别是的中点,且.(Ⅰ)求证:平面; (Ⅱ)求证:平面⊥平面.
(本小题满分12分)已知分别为三个内角的对边,.(1)求的大小;(2)若= 7,求的周长的取值范围.