㈠小明在玩积木游戏时,把三个正方形积木摆成一定的形状,正视图如图①,问题(1):若此中的三角形△DEF为直角三角形,P的面积为9,Q的面积为15,则M的面积为_______。问题(2):若P的面积为36cm2,Q的面积为64 cm2,同时M的面积为100 cm2,则△DEF为_______三角形。㈡图形变化:如图②,分别以直角三角形的三边为直径向三角形外作三个半圆,你能找出这三个半圆的面积之间有什么关系吗?请说明理由。
如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。(1)求抛物线的解析式;(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标;(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。
如图,已知Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连结BD。 (1)若AD=3,BD=4,求边BC的长; (2)取BC的中点E,连结DE,求证:ED与⊙O相切。
如图,为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘上的指针所指字母都相同时,他就获得一次指定一位到会者为大家表演节目的机会。 (1)利用树形图或列表的方法表示出游戏可能出现的所有结果。 (2)若小明参加一次游戏,则他能获得这种指定机会的概率是多少?
先阅读下面的例题,再按要求解答。例:解一元二次不等式x2-9>0解:∵x2-9=(x+3)(x-3) ∴(x+3)(x-3)>0 由有理数的乘法法则“两数相乘,同号得正”得(1) (2)解不等式组(1),得x>3解不等式组(2),得x<-3∴(x+3)(x-3)>0的解集为x>3或x<-3即一元二次不等式x2-9>0的解集为x>3或x<-3问题:求分式不等式的解集
如图,△ABC中,D为AC边上一点,DE⊥BC于点E,若AD=2DC,AB=4DE,求sinB的值。