计算:.
已知在平面直角坐标系中点 A a , b ,点 B a , 0 ,且满足 2 a - b + ( a - 4 ) 2 = 0 .
(1)求点 A ,点 B 的坐标;
(2)已知点 C 0 , b ,点 P 从 B 点出发,沿 x 轴负方向以 1 个单位每秒的速度移动.同时点 Q 从 C 点出发,沿 y 轴负方向以 2 个单位每秒的速度移动,某一时刻,如图②所示,且 S 阴 = 1 2 S 四边形 OCAB .求点 P 移动的时间?
(3)在(2)的条件下, AQ 交 x 轴于 M ,作 ∠ ACO , ∠ AMB 的角平分线交于点 N ,如图③所示,判断 ∠ N - ∠ APB - ∠ PAQ ∠ AQC 是否为定值,若是定值求其值;若不是定值,请说明理由.
如图,已知 AB / / CD ,分别探究下列四个图形(图(1),图(2),图(3),图(4))中 ∠ APC 和 ∠ PAB , ∠ PCD 的数量关系,用等式表示出来,并说明理由.
已知 m , n 是有理数,且 5 + 2 m + 3 - 2 5 n + 7 = 0 ,求 m , n 的值.
如图,已知 AB / / CD , ∠ EAF = 1 4 ∠ EAB , ∠ ECF = 1 4 ∠ ECD ,求证: ∠ AFC = 3 4 ∠ AEC
如图①折线 APB 是夹在两平行线 a 和 b 之间的一条折线.
(1)探求 ∠ APB 与 ∠ α , ∠ β 之间的关系;
(2)若图①变化成图②,③,④,⑤,则各图中标注的角( ∠ α , ∠ β , ∠ γ , ∠ x , ∠ y )又有什么关系?请直接写出结论;
(3)如图⑥中,若 A A 1 / / B A n , ∠ A 1 , ∠ A 2 , ∠ A 3 , ⋯ , ∠ A n 与 ∠ B 1 , ∠ B 2 , ∠ B 3 , ⋯ , ∠ B n - 1 之间有什么关系?请直接写出结论.