先化简,再求值:,其中.
在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=-x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.
如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C,过B点作BE⊥x轴,垂足为E.若△ADO的面积为1,D为OB的中点,(1)求四边形DCEB的面积。(2)求k的值。
(1)解方程:x2﹣2x﹣2=0 (2)解方程:.4(x+3)2=25(x﹣2)2.
如图1,直线l交x轴、y轴分别于A、B两点,A(a,0),B(0,b),且(a-b)2+|b-4|=0.(1)求A、B两点坐标;(2)如图2,C为线段AB上一点,且C点的横坐标是3.求△AOC的面积;(3)如图2,在(2)的条件下,以OC为直角边作等腰直角△POC,请求出P点坐标;(4)如图3,在(2)的条件下,过B点作BD⊥OC,交OC、OA分别于F、D两点,E为OA上一点,且∠CEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.
如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.