(本小题满分12分)已知函数.(1)若的定义域和值域均是,求实数的值;(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.
如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的直线与椭圆相交M、N两点,且|MN|=1.(Ⅰ) 求椭圆的方程;(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.
已知数列满足:且对任意的有.(Ⅰ)求数列的通项公式;(Ⅱ)是否存在等差数列,使得对任意的有成立?证明你的结论
已知抛物线与直线相切于点.(Ⅰ)求的解析式;(Ⅱ)若对任意,不等式恒成立,求实数的取值范围.
记函数,,它们定义域的交集为,若对任意的,,则称是集合的元素.(1)判断函数是否是的元素;(2)设函数,求的反函数,并判断是否是的元素;
(Ⅰ)已知函数:求函数的最小值; (Ⅱ)证明:; (Ⅲ)定理:若 均为正数,则有 成立(其中.请你构造一个函数,证明: 当均为正数时,.