(本小题满分14分)如图,在三棱锥中,面面,是正三角形, ,.(Ⅰ)求证:;(Ⅱ)求平面DAB与平面ABC的夹角的余弦值;(Ⅲ)求异面直线与所成角的余弦值.
已知数列的前n项和为,且满足,,(1)设,数列为等比数列,求实数的值;(2)设,求数列的通项公式;(3)令,求数列的前n项和.
已知抛物线的焦点为,准线为,过上一点P作抛物线的两切线,切点分别为A、B,(1)求证:;(2)求证:A、F、B三点共线;(3)求的值.
已知函数为奇函数,为常数,(1)求实数的值;(2)证明:函数在区间上单调递增;(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.
连续抛两次质地均匀的骰子得到的点数分别为和,将作为Q点的横、纵坐标,(1)记向量的夹角为,求的概率;(2)求点Q落在区域内的概率.
已知直三棱柱中,,点M是的中点,Q是AB的中点,(1)若P是上的一动点,求证:;(2)求二面角大小的余弦值.