(本小题满分12分)已知函数(Ⅰ)判断的奇偶性;(Ⅱ)求的值域.
在5件产品中含有2件次品,从这5件产品中选出3件所含的次品数设为的分布列,并求的数学期望.
已知点在以两坐标轴为对称轴的椭圆上,你能根据点的坐标最多写出椭圆上几个点的坐标(点除外)?这几个点的坐标是什么?
已知抛物线的顶点在原点,焦点为圆的圆心.(1)求此抛物线方程;(2)如图,是否存在过圆心的直线与抛物线、圆顺次交于且使得,成等差数列,若存在,求出它的方程;若不存在,说明理由.
已知椭圆,过其左焦点且斜率为的直线与椭圆及其准线的交点从左到右的顺序为(如图),设.(1)求的解析式;(2)求的最值.
四点都在椭圆上,为椭圆在轴正半轴上的焦点.已知与共线,与共线,且.求四边形的面积的最小值和最大值.