(理)已知数列{an}的前n项和,且=1,.(I)求数列{an}的通项公式;(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;(III)求证:≤bn<2.
(本题共13分)已知函数在上满足,且当时,。 (1)求、的值; (2)判定的单调性; (3)若对任意x恒成立,求实数的取值范围。
(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,小时内供水总量为吨。现在开始向池中注水并同时向居民小区供水,问: (1)多少小时后蓄水池中的水量最少? (2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?
(本题共12分)设为定义在上的偶函数,当时,,且的图象经过点,又在的图象中,有一部分是顶点为(0,2),且过的一段抛物线。 (1)试求出的表达式; (2)求出值域;
(本题共12分) (1)计算 (2)解方程:
(本题共12分)设,,。 (1)求的值及; (2)设全集,求 (∁I A)(∁I B); (3)写出(∁I A)(∁I B)的所有子集。