某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外每天的房租等固定成本共24元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
本市某旅游度假区每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.(1)当0≤x≤200,且x为整数时,y关于x的函数解析式为 ;当200<x≤300,且x为整数时,y关于x的函数解析式为 .(2)要使旅游度假区一天的赢利超过1000元,试问该天至少应售出多少张门票?(3)请思考并说明图像与y轴交点(0,-1000)的实际意义.
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
先化简,再求值:÷ ,其中.
解不等式组,并把它的解集表示在数轴上:
已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD的面积的最大值;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.