某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外每天的房租等固定成本共24元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
运算求解(本小题满分10分)(1)解不等式,并把它的解集在数轴上表示出来. (2)解方程:
计算化简(本小题满分10分)(1)计算: (2)化简:,然后选择一个合适的的值代入上式求值.
如图,在△ABC中,AC = BC,AB = 8,CD⊥AB,垂足为点D.M为边AB上任意一点,点N在射线CB上(点N与点C不重合),且MC = MN.设AM = x.(1)如果CD = 3,AM = CM,求AM的长;(2)如果CD = 3,点N在边BC上.设CN = y,求y与x的函数解析式,并写出函数的定义域;(3)如果∠ACB = 90°,NE⊥AB,垂足为点E.当点M在边AB上移动时,试判断线段ME的长是否会改变?说明你的理由.
已知:抛物线与x轴正半轴相交于点A,点B(m,-3)为抛物线上一点,△OAB的面积等于6.(1)求该抛物线的表达式和点B的坐标;(2)设C为该抛物线的顶点,⊙C的半径长为2.以该抛物线对称轴上一点P为圆心,线段PO的长为半径作⊙P,如果⊙P与⊙C相切,求点P的坐标.
已知:如图,在梯形ABCD中,AD // BC,E、F分别为边AB、DC的中点,CG // DE,交EF的延长线于点G.(1)求证:四边形DECG是平行四边形;(2)当ED平分∠ADC时,求证:四边形DECG是矩形.