某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外每天的房租等固定成本共24元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
如图,在 ▱ ABCD 中,点 E 是 AB 边的中点, DE 的延长线与 CB 的延长线交于点 F .
求证: BC = BF .
如图,已知抛物线 y = − x 2 + bx + c 与 y 轴相交于点 A ( 0 , 3 ) ,与 x 正半轴相交于点 B ,对称轴是直线 x = 1
(1)求此抛物线的解析式以及点 B 的坐标.
(2)动点 M 从点 O 出发,以每秒2个单位长度的速度沿 x 轴正方向运动,同时动点 N 从点 O 出发,以每秒3个单位长度的速度沿 y 轴正方向运动,当 N 点到达 A 点时, M 、 N 同时停止运动.过动点 M 作 x 轴的垂线交线段 AB 于点 Q ,交抛物线于点 P ,设运动的时间为 t 秒.
①当 t 为何值时,四边形 OMPN 为矩形.
②当 t > 0 时, ΔBOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.
如图,已知 AB 是 ⊙ O 的直径,弦 CD 与直径 AB 相交于点 F .点 E 在 ⊙ O 外,作直线 AE ,且 ∠ EAC = ∠ D .
(1)求证:直线 AE 是 ⊙ O 的切线.
(2)若 BC = 4 , cos ∠ BAD = 3 4 , CF = 10 3 ,求 BF 的长.
在 4 × 4 的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个 4 × 4 的方格内限画一种)
要求:
(1)5个小正方形必须相连(有公共边或公共顶点视为相连)
(2)将选中的小正方形方格用黑色签字笔涂成阴影图形.(若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)
如图,线段 AB 、 CD 分别表示甲、乙两建筑物的高, BA ⊥ AD , CD ⊥ DA ,垂足分别为 A 、 D .从 D 点测到 B 点的仰角 α 为 60 ° ,从 C 点测得 B 点的仰角 β 为 30 ° ,甲建筑物的高 AB = 30 米.
(1)求甲、乙两建筑物之间的距离 AD .
(2)求乙建筑物的高 CD .