某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外每天的房租等固定成本共24元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知(一次拿到8元球).
(1)求这4个球价格的众数;
(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.
①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;
②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.
又拿
先拿
已知:整式,整式.
尝试 化简整式.
发现,求整式.
联想 由上可知,,当时,,,为直角三角形的三边长,如图.填写下表中的值:
直角三角形三边
勾股数组Ⅰ
8
17
勾股数组Ⅱ
35
有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入,,,中的某一个(可重复使用),然后计算结果.
(1)计算:;
(2)若□,请推算□内的符号;
(3)在“1□2□”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
如图是轮滑场地的截面示意图,平台距轴(水平)18米,与轴交于点,与滑道交于点,且米.运动员(看成点)在方向获得速度米秒后,从处向右下飞向滑道,点是下落路线的某位置.忽略空气阻力,实验表明:,的竖直距离(米与飞出时间(秒的平方成正比,且时,,的水平距离是米.
(1)求,并用表示;
(2)设.用表示点的横坐标和纵坐标,并求与的关系式(不写的取值范围),及时运动员与正下方滑道的竖直距离;
(3)若运动员甲、乙同时从处飞出,速度分别是5米秒、米秒.当甲距轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出的值及的范围.
如图,点在数轴上对应的数为26,以原点为圆心,为半径作优弧,使点在右下方,且,在优弧上任取一点,且能过作直线交数轴于点,设在数轴上对应的数为,连接.
(1)若优弧上一段的长为,求的度数及的值;
(2)求的最小值,并指出此时直线与所在圆的位置关系;
(3)若线段的长为12.5,直接写出这时的值.