如图,在△ABC中,AB=AC=4,sinC=, (1)求BC的长; (2)作以AC为直径的⊙O,使⊙O交线段AB于点D,交线段BC于点E,并求点D到BC的距离(要求:尺规作图,保留作图痕迹,不写画法)
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF. (1)求证:D是BC的中点; (2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,点A,B,C的坐标分别为(0,﹣1),(1,﹣1),(5,﹣1) (1)判断△ABC的形状; (2)将△ABC绕点C顺时针旋转90°得到△A1B1C,请在网格中画出△A1B1C,并直接写出点A1和B1的坐标; (3)将△ABC绕线段AC所在直线旋转一周,求所得几何体的表面积.
小明在数学课外小组活动中遇到这样一个“新定义”问题: 定义运算“※”为:a※b=,求1※(﹣4)的值. 小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b<0,所以1※(﹣4)=, 请你参考小明的解题思路,回答下列问题: (1)计算:3※7; (2)若15※m=,求m的值; (3)函数y=4※x(x≠0)的图象大致是 .
某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):
(1)求这5天的用电量的平均数; (2)求这5天用电量的众数、中位数; (3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.