如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F。(1) 求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值.
某商店一天可销售某商品20套,每套盈利40元。为了尽快减少库存,决定采取降价措施。调查发现每套商品每降1元,则平均每天多销售2套. (1)若降价5元时,商店每天可售出该商品套;可获元利润; (2)若每天盈利1200元,则应降价多少元?
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2,指针位置固定,转动转盘后任其自由停止后,某个扇形会恰好停在指针所指的位置,得到这个扇形上相应的数.若指针恰好指在等分线上,则需重新转动转盘. (1)若小静转动转盘一次,则她得到负数的概率为; (2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.请用列表法(或画树状图)求出两人“不谋而合”的概率.
如图,在边长为1的小正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别为A(-2,3)、B(-3,1).△AOB绕点O顺时针旋转90°后得到△A1OB1。 (1)画出△A1OB1; (2)点A1的坐标为; (3)点A旋转到点A1所经过的路线长为_____________.(结果保留π)
已知关于的方程-(k+2)+2k=0 (1)说明:无论k取何值,方程总有实数根; (2)若方程有两个相等的实数根,求出方程的根.
先化简,再求值:,其中a=-1,b=.