(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线、.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.
数列的前项和为,且是和的等差中项,等差数列满足,. (1)求数列、的通项公式; (2)设,数列的前项和为,证明:.
如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P. (1)若C是半径OA的中点,求线段PC的长; (2)设,求面积的最大值及此时的值.
设,函数. (1)若,求曲线在点处的切线方程; (2)求函数的单调区间; (3)当时,求函数在上的最小值.
已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切. (1)求椭圆的方程; (2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
在数列中,,,对任意成立,令,且是等比数列. (1)求实数的值; (2)求数列的通项公式; (3)求和:.