(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线、.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.
解关于的不等式:
一个圆环直径为m,通过金属链条、、、(、、是圆上三等分点)悬挂在处,圆环呈水平状态,并距天花板2m(如图所示),为使金属链条总长最小,的长应为
已知点是函数且)的图象上一点,等比数列的前项和为,数列的首项为 ,且前项和满足(1)求数列和的通项公式;(2)若数列{前项和为,问>的最小正整数是多少? .
已知函数 . (1)解不等式; (2)设时,有最小值为,求的值.
在锐角△中,、、分别为角、、所对的边,且(1)确定角的大小; (2)若,且△的面积为,求的值