(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线、.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.
定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y). (1)求证f(x)为奇函数; (2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
已知函数, (1)讨论的奇偶性与单调性; (2)若不等式的解集为的值; (3)求的反函数; (4)若,解关于的不等式R).
已知函数y=(a2x)·()(2≤x≤4)的最大值为0,最小值为-,求a的值.
已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y= f-1(x)图象上的点. (1)求实数k的值及函数f-1(x)的解析式; (2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2 f-1(x+-3)-g(x)≥1恒成立,试求实数m的取值范围.
若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1). (1)求f(log2x)的最小值及对应的x值; (2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?