按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型.
在一边长为a的正方形铁皮上剪下一块圆形和一块扇形铁皮(如图),使之恰好做成一个圆锥模型,求它的底面半径.
如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm, 工人师傅利用这块铁皮做了一个侧面积最大的圆锥,求这个圆锥的底面直径.
在半径为27m的圆形广场中央点O的上空安装了一个照明光源S,S 射向地面的光束呈圆锥形,如图所示,若光源对地面的最大张角(即图中∠ASB的度数是120°时,效果最大,试求光源离地面的垂直高度SO为多少时才符合要求?(精确到0.1m)
已知圆锥的底面半径是8,母线的长是15,求这个圆锥的侧面展开图的圆心角.
如图,正△ABC的边长为1cm,将线段AC绕点A顺时针旋转120 °至AP1, 形成扇形D1;将线段BP1绕点B顺时针旋转120°至BP2,形成扇形D2;将线段CP2绕点C 顺时针旋转120°至CP3,形成扇形D3;将线段AP3绕点A顺时针旋转120°至AP4,形成扇形D4,……设为扇形的弧长(n=1,2,3…),回答下列问题:(1)按要求填表:
(2)根据上表所反映的规律,试估计n至少为何值时,扉形的弧长能绕地球赤道一周?(设地球赤道半径为6400km).