若已知两点之间的所有连线中,线段最短,那么你能否试着解决下面的问题呢?问题:已知正方体的顶点A处有一只蜘蛛,B处有一只小虫,如图所示,请你在图上作出一种由A到B的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子.
(本小题满分12分)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.(1)填空:菱形ABCD的边长是▲ 、面积是▲ 、高BE的长是▲ ;(2)探究下列问题: ①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值; ②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =" 4" 秒时的情形,并求出k的值.
(本小题满分10分)已知:如图,⊙与轴交于C、D两点,圆心的坐标 为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)
(1)求切线BC的解析式;(2)若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G, 且∠CGP=120°,求点的坐标;(3)向左移动⊙(圆心始终保持在轴上),与直线BC交于E、F,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点的坐标,若不存在,请说明理由.
(本小题满分6分)设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.(1)如图①,当r<a时,根据d与a、r之间关系,请你将⊙O与正方形的公共点个数 填入下表:(2)如图②,当r=a时,根据d与a、r之间关系, 请你写出⊙O与正方形的公共点个数。 当r=a时,⊙O与正方形的公共点个数可能有 个;(3)如图③,当⊙O与正方形有5个公共点时,r= (请用a的代数式表示r,不必说理)
(本小题满分8分)如图所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为a cm,宽为b cm,厚为c cm,如果按如图所示的包书方式,将封面和封底各折进去3cm,用含a,b,c的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm,宽为16cm,厚为6cm的字典,你能用一张长为43cm,宽为26cm的矩形纸包好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.
(本小题满分6分)如图,在平面直角坐标系中,的顶点坐标为、、.(1)若将向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的;(2)画出绕原点旋转后得到 的;(3)与是位似图形,请写出位似中心的坐标:;(4)顺次连结、、、,所得到的图形是轴对称图形吗?(填“是”或“不是”)