如图,轴截面为边长是2的正方形的圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且是圆的直径.(1)求三棱柱的体积;(2)证明:平面⊥平面
已知下列两个命题:函数上单调递增;关于的不等式的解集为R,为假命题,为真命题,求的取值范围。
(本小题满分l2分)已知函数,∈R.(I)讨论函数的单调性;(Ⅱ)当时,≤恒成立,求的取值范围.
(本小题满分12分)已知椭圆M的中心为坐标原点 ,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。(1)求椭圆M的标准方程;(2)设点N(t,0)是一个动点,且,求实数t的取值范围。
(本小题满分12分)某项计算机考试按科目A、科目B依次进行,只有大拿感科目A成绩合格时,才可继续参加科目B的考试,已知每个科目只允许有一次补考机会,两个科目均合格方快获得证书,现某人参加这项考试,科目A每次考试成绩合格的概率为,科目B每次考试合格的概率为,假设各次考试合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这次考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求随即变量的分布列和数学期望.
(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.(I)求证:EG面ABF;(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.