已知函数,且函数在和处都取得极值。(1)求实数的值;(2)求函数的极值;(3)若对任意,恒成立,求实数的取值范围。
设关于的不等式,的解集是,函数 的定义域为。若“或”为真,“且”为假,求的取值范围。
在复平面内, 是原点,向量对应的复数是,=2+i。(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数和;(Ⅱ)复数,对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。
已知命题“椭圆的焦点在轴上”;命题在上单调递增,若“”为假,求的取值范围.
如图,已知直线()与抛物线:和圆:都相切,是的焦点.(Ⅰ)求与的值;(Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上;(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为, 直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
已知函数(Ⅰ)若函数恰好有两个不同的零点,求的值。(Ⅱ)若函数的图象与直线相切,求的值及相应的切点坐标。