(本小题满分14分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和.(1)求、和;(2)若对任意的,不等式恒成立,求实数的取值范围;(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
设函数. (1)求函数的单调区间. (2)若方程有且仅有三个实根,求实数的取值范围.
已知命题方程有两个不等的正实数根;命题方程无实数根。若“或”为真命题,求的取值范围.
(本小题满分13分)已知函数. (1)若对于区间内的任意,总有成立,求实数的取值范围; (2)若函数在区间内有两个不同的零点,求: ①实数的取值范围;②的取值范围.
(本小题满分13分)已知数列中,,其前项和满足. (1)求证:数列为等差数列,并求的通项公式; (2)设,求数列的前项和; (3)设(为非零整数,),是否存在确定的值, 使得对任意,有恒成立.若存在求出的值,若不存在说明理由。
(本小题满分12分)已知,其中. (1)当时,证明; (2)若在区间,内各有一个根,求的取值范围.