如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.
定义:长宽比为:1(n为正基数)的矩形称为株为矩形.下面,我们通过折叠的方式折出一个矩形.如图①所示. 操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH 操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF 则四边形BCEF为矩形 证明:设正方形ABCD的边长为1,则BD==. 由折叠性质可知BG=BC=1,,则四边形BCEF为矩形 阅读以上内容,回答下列问题: 在图中,所有与CH相等的线段是 ,tan的值是 已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图。 求证:四边形BCMN是矩形 将图中的矩形BCMN沿用(2)中的操作3次后,得到一个“矩形”,则n的值是
如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.求证:四边形ABCD是矩形.
理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一 如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===. 思路二 利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===. 思路三 在顶角为30°的等腰三角形中,作腰上的高也可以… 思路四 … 请解决下列问题(上述思路仅供参考). (1)类比:求出tan75°的值; (2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度; (3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.
如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2. (1)在图中画出四边形AB′C′D′; (2)填空:△AC′D′是 三角形.
求证:等腰三角形的两底角相等.已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.