先化简,再求值:;其中:x="2"
阅读理解:学习了三角形全等的判定方法:“SAS”,“ASA”,“AAS”,“SSS”和直角三角形全等的判定方法“HL”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA”的情形进行研究.我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D.初步探究:如图1,已知AC="DF," ∠A=∠D,过C作CH⊥射线AM于点H,对△ABC 的CB边进行分类,可分为“CB<CH,CB=CH,CH<CB<CA,”三种情况进行探究.深入探究:第一种情况,当BC<CH时,不能构成△ABC和△DEF.第二种情况,(1)如图2,当BC=CH时,在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D,根据 ,可以知道Rt△ABC≌Rt△DEF.第三种情况,(2)当CH<BC<CA时,△ABC和△DEF不一定全等.请你用尺规在图1的两个图形中分别补全△ABC和△DEF,使△DEF和△ABC不全等(表明字母,不写作法,保留作图痕迹).(3)从上述三种情况发现,只有当BC=CH时,才一定能使△ABC≌△DEF.除了上述三种情况外,BC边还可以满足什么条件,也一定能使△ABC≌△DEF?写出结论,并利用备用图证明.
在△ABC内侧作射线,自B,C分别向射线AP引垂线,垂足分别为D,E,M为BC边中点,连接MD,ME.(1)依题意补全图1;(2)求证:MD=ME;(3)如图2,若射线AP平分∠BAC,且AC>AB,求证:MD=.
已知:抛物线y=x²+bx+c经过点(2,-3)和(4,5). (1)求抛物线的表达式及顶点坐标; (2)将抛物线沿x轴翻折,得到图像G,求图像G的表达式; (3)在(2)的条件下,当-2<x<2时,直线y=m与该图像有一个公共点,求m的值或取值范围.
阅读下面材料:小强遇到这样一个问题:试作一个直角△ABC,使∠C=90°,AB=7,AC+BC=9.小强是这样思考的:如图1,假定直角△ABC已作出,延长AC到点D,使CD=CB,则AD=9,∠D=45°,因此可先作出一个辅助△ABD,再作BD的垂直平分线分别交AD于点C,BD于点E,连接BC,所得的△ABC即为所作三角形.具体做法小强是利用图2中1×1正方形网格,通过尺规作图完成的.(1)请回答:图2中线段AB等于线段 .(2)参考小强的方法,解决问题:请在图3的菱形网格中(菱形最小内角为,边长为a),画出一个△ABC,使∠C=,AB=6b,AC+BC=8b.(在图中标明字母,不写作法,保留作图痕迹).
已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于点D,DE⊥CB的延长线于点E.(1)求证:DE为⊙O的切线;(2)若∠A=30°,BE=3,分别求线段DE和的长.