已知函数,.(1)求函数的单调区间和极值;(2)已知函数的图象与函数的图象关于直线对称;证明:当时,(3)如果且,证明
(本小题满分14分) (Ⅰ) 已知动点到点与到直线的距离相等,求点的轨迹的方程; (Ⅱ) 若正方形的三个顶点,,()在(Ⅰ)中的曲线上,设的斜率为,,求关于的函数解析式; (Ⅲ) 求(2)中正方形面积的最小值。
(本小题满分14分) 已知函数. (Ⅰ)若,求函数的极值; (Ⅱ)当时,不等式恒成立,求实数的取值范围。
(本小题满分14分) 已知:数列{}的前n项和为,满足= (Ⅰ)证明数列{}是等比数列.并求数列{}的通项公式=? (Ⅱ)若数列{}满足=log2(),而为数列的前n项和,求=?
(本小题满分14分) 如右图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,∠PDA=30°,点F是PB的中点, 点E在边BC上, (Ⅰ)若E为BC中点,证明:EF∥平面PAC; (Ⅱ)证明:AF⊥平面PBC; (Ⅲ)当BE等于何值时,二面角P—DE—A的大小为45°?
(本小题满分12分) 某设区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖。 (I)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒总抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及。